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Abstract 0 A novel hydrodynamic model for drug distribution, 
when the drug is administered intravenously in physiological sys- 
tems, is presented. In addition to obtaining results of familiar mul- 
ticompartment models, the theory presents fresh insights into 
pharmacokinetic problems. A detailed procedure is included for 
evaluating drug-physiological system parameters such as the elim- 
ination rate constant, volumes of distribution, and permeability 
properties from the experimental time course of concentration of 
the central compartment. 
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Several examples of experimental studies of drug 
elimination from plasma following absorption and 
initial distribution are available (1-4). Intravenous 
administration of a drug assures that the adminis- 
tered substance is initially distributed in plasma and 
then to other tissues including the kidneys, and final- 
ly it is eliminated from the body. The salient feature 
of these studies is that variations of drug concentra- 
tion in plasma with time can be adequately repre- 
sented as the sum of two or three exponential func- 
tions, the characteristic parameters of which are eval- 
uated experimentally. 

The theoretical foundations of such pharmacoki- 
netic experiments are based on the two- and three- 
compartment models (1, 2). This report presents a 
novel hydrodynamic picture of what is probably hap- 
pening to substances administered intravenously (5). 
The model presented is simplified for clarity and can 
possibly account for many experimental observa- 
tions, including the kink observed in the plot of plas- 
ma concentration of dicumarol(4) uersus time. 

The model presented enables one to relate the ki- 
netic parameters of familiar compartment models 
with physical parameters such as the permeability of 
barriers separating the compartments. The model 
can be improved by inclusion of appropriate chemical 
reactions with which the drug can participate in cer- 
tain compartments and may help in quantitizing 
phenomena such as bone growth in physiology. Of 
immediate interest is that the model sheds new light 
on certain aspects of existing compartment model 
theories. 

HYDRODYNAMIC ANALOG OF THREE- 
COMPARTMENT MODEL ANALYSIS 

Consider the flow of a liquid into Compartments 2 and 3 from 
Compartment 1 and to  the outside through a tap connected to 
Compartment 2 (Fig. 1). Assume that a t  time t = 0, the liquid is 
poured into Compartment 1, with no liquid present in Compart- 
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Figure 1-Hydrodynamic analogy of the three-compartment 
system. 

ments 2 and 3. The partition between Compartments 1 and 3 is po- 
rous and has an effective pore area, A13, and thickness, h 1:3. Simi- 
larly, the partition between Compartments 1 and 2 is also porous, 
with an effective pore area, A I Z ,  and thickness, hlz .  

Then study the levels of liquid in the three compartments a t  
four arbitrary times (Fig. 1). Initially the liquid flows from Com- 
partment 1 to Compartments 2 and 3 at different rates, depending 
on the porosity of partitions and the volumes of compartments. 
This results in a rise of the levels of liquid in Compartments 2 and 
3 and a corresponding decrease in the level of liquid in Compart- 
ment 1. As time progresses, the difference in levels between Com- 
partments 1 and 3 decreases and the levels in Compartments 1 and 
3 become equal a t  a certain time, t = t 3 * .  At this time, the net flow 
of liquid between Compartments 1 and 3 vanishes. 

If the tap connected to Compartment 2 has been closed all of the 
time, there will come a time, t = t o ,  when levels in all three com- 
partments become equal and the net flow between compartments 
vanishes. (Discussion about whether t o  is finite or infinite is subtle 
and not very relevant to the present discussion.) This represents 
the most stable equilibrium state of the system. Since, however, 
the tap connected to Compartment 2 is always (slightly) open, this 
equilibrium state is never reached in the system depicted in Fig. 1 
for reasonable times. The stable state is when all of the liquid in 
the three compartments has drained to the outside. Thus, for 
times greater than t 3*, the direction of flow of liquid between 
Compartments 1 and 3 reverses and the levels of liquids in the 
three compartments attain the configuration depicted in Fig. Id. 
Flow to the outside through the tap continues until all of the liquid 
is depleted. 

The multicompartment models of pharmacokinetics can now be 
studied with the help of this hydrodynamic analogy, where levels 
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are to be replaced by concentrations. Certain conclusions of a gen- 
eral nature can be obtained from this extremely simple example. 

First, net loss of material from the system occurs through the 
elimination process ( i . e . ,  leak through the tap ignoring any  meta- 
bolic process loss in compartments), which may be adequately rep- 
resented by a first-order rate constant, k z o .  Thus, one has the 
mass conservation equation for the three-compartment model: 

( d / d t ) l X , ( t ) V ~  + Xz( t )V,  + XXt)V,l = - k m V r X X t )  (Eq. 1) 

where X l f t ) ,  X z f t ) ,  and X 3 ( t )  are concentrations in Compart- 
ments 1, 2, and 3, respectively, at time t;  and V1, Vp,  and V3 are 
the volumes of distribution of the material in Compartments 1, 2, 
and 3, respectively. The rate of loss of material from the system at 
time t is assumed to be proportional to the concentration in Com- 
partment 2 a t  time t ,  the negative sign in Eq. 1 denoting the loss. 

If Q i d t )  and Q 1 3 f t )  represent the net (total) amount of sub- 
stance transferred from Compartment 1 to Compartments 2 and 3, 
respectively, from time zero to time t , the mass balance equation 
may be written as (6): 

where the super dots indicate first time derivatives of appropriate 
quantities. 

Only when the volumes of distribution of the three compart- 
ments equal one another does one get a relation of the type (7): 

X J t )  + X, ( t )  + X,(t) = -k,X,(t) (Eq. 3) 

Second, the appropriate initial conditions are that a t  time t = 0, 
one has: 

X,(O) = dose/V, 0%. 4a)  
X A O )  = X 3 ( 0 )  = 0 0%. 46)  

The third conclusion that one arrives a t  is that the transport 
from Compartment 1 to 3 occurs only in one direction at any time 
t; the direction of transport is determined by the difference in con- 
centrations between Compartments 1 and 3. Fourth, there exists a 
positive definite critical time t 3*,  at  which the flow between Com- 
partments 1 and 3 vanishes. For times greater than t 3 * ,  the loss in 
concentration in Compartment 1 due to the flow to Compartment 
2 and the outside is partly offset by the flow of material from Com- 
partment 3 to 1. 

The fifth conclusion is that if the leak to the outside is eliminat- 
ed, ie., the tap is closed at  all times, it takes a minimum finite 
time, t o ,  for the system to reach equilibrium when concentrations 
in the three compartments will be equal. When k20 is equal to  
zero, only for times equal to and greater than t o ,  the right-hand 
side of Eq. 3 vanishes and Eq. 3 is valid with unequal volumes of 
distribution of compartments. 

Finally, the sixth conclusion that one arrives a t  from the simple 
hydrodynamic model is that the variation in concentrations of 
compartments with respect to time for the system is determined 
by the set of differential equations: 

X l ( t )  = -k61p + 6 d / v , I X I  + (612/VI)XZ + (6dV1)X, ,  0%. 
X , ( t )  = -Ka,,/v,, + k,"lX, + (6 , , /V , ,X,  (Eq. 5b) 
X,Xt )  = - ( 6 l : l / v d x ,  + (al,l/v:,)x, (Eq. 5c) 

The constant parameters 612 and 613 can be identified with the use 
of Fick's law (8) as: 

6 1 2  = (Di>Ai?/hiz) (Eq. 6a) 
6l:l  = (D1:jA13/h13) ( E q .  66)  

where D p and D 1 3  are the diffusion coefficients of administered 
substance in the barrier between Compartments 1 and 2 and Com- 
partments 1 and 3, respectively; A12 and hlz  are the effective 
pore area and thickness, respectively, of the barrier separating 
Compartments 1 and 2; and A13 and h 1 3  are the-effective pore area 
and thickness, respectively, of the barrier separating Compart- 
ments 1 and 3. 

The differential equations of conventional pharmacokinetics 
deal in amounts rather than in concentrations. With the identifica- 
tions: 

where k12, k21, k13, and k31 are the first-order rate constants of 
the familiar three-compartment model, one obtains a one-to-one 
correspondence between the hydrodynamic analog and the famil- 
iar pharmacokinetic expressions. 

It is a necessary consequence of the hydrodynamic analogy 
model and principles of irreversible thermodynamics that: 

k,,*V, = kz l*V,  (Eq. 8a) 
k13*Vl  = k31*V3 (Eq. 8 6 )  

Thus, with the hydrodynamic model, one is able to relate diffusion 
coefficients in the barrier, effective pore area, and permeability of 
the substances across the barrier with the kinetic first-order rate 
coefficients of the familiar compartmental model equations. 

THEORETICAL 

Based on the assumption that the rate of transfer of solute ma- 
terial between adjacent compartments a t  any time t is proportion- 
al to the difference in concentrations between the compartments 
a t  time t ,  one has the set of coupled differential equations: 

(Eq .  9U) 
(Eq. 9 6 )  

Q d t )  = 6 , 6 X l ( t )  - XXt, l  
Q13(t) = 613[Xl(t) - xht)] 

where Q 1 2 ( t )  is the rate of transfer of solute from Compartment 1 
to 2 a t  time t. The concentrations of drug substance in Compart- 
ments 1 and 3 at  any time t are related to Q l d t )  and Q 1 3 f t )  by 
the relations (6,8): 

X , ( t )  = ( d w / V l )  - ( l / V l ) { Q l & )  + Ql:dt)I (Eq. 100) 
x 3 ( t )  = Q 1 3 ( t ) / V 3  (Eq. 10h) 

With k20 nonvanishing, the concentration in Compartment 2 at 
time t is related to Q 1 2 ( t )  by the differential equation: 

X , ( t )  + k,X,( t )  = Q l ( t ) / V ,  (Eq. 11) 

To obtain the solutions of Eqs. 9a and 9b subject to the con- 
straints of Eqs. 10a, lob, and 11, it is convenient to differentiate 
once more with respect to time: 

Ql&) = S,LX, - XJ tEq. 12~1) 
Q13(t) = 6,JX, - X,] (Eq. 1%) 

Since the solution of Eq. 11 is evident with vanishing 012, assume 
that the solution of Eqs. 12a and 12b is given by: 

X X t )  = A(t)  exp (-k,$) ( E q .  13) 

where A(t) is an unknown function of t to be determined. Use of 
Eqs. 10a, lob, 11, and 13 in Eqs. 12a and 12b yields, upon rear- 
rangement: 

Q1&) = A(t)V,exp (-halt) 
Q1dt) = ~V,V,/61,)I'exp(-k,0t)K;4 + &a,, - k 2 ( , )  - 

(Eq. 14n) 

A(k2o6Ij/VJ)] (Eq.  14h)  
alp = 6, , (V,  + V 2 ) / V I V L  (Eq. 14c) 

Substitution of the results of Eqs. 14a-14c in Eqs. 15a and 15b 

(Eq. 1 5 n )  
a1:$ = 6, : , (V,  + V,)/V,V,j (Eq. 1W 

yields a third-order differential equation for the function A(t) 
with constant coefficients as: 

obtainable from Eq. 126-uiz.: 

GlJ + a13413 = -(61:l/vl)/Q12(t) 
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A + AP + A Q  + A R  = 0 (Eq. 16) 

where p, (?, and R are time-independent parameters related to the 
permeabilities, volumes of compartments, and k20 by: 

results of this analysis in Eqs. 20a-20e resemble the results of the 
familiar three-compartment model, as the sum of three exponen- 
tial terms, one of the integration constants must have a sign oppo- 
site to the signs of other two integration constants. This result has 
the implication (which is not generally recognized) that a function 
of the type X c A u  exp ( p o t ) ,  where A,’s  are constants and p o ’ s  
are negative definite time-independent quantities, can have ex- 
tremum ualues. This aspect is utilized to explain (9) the observed 
kink in the plot of plasma concentration uersus time’. 

P = aI2  + alj - 2km 
Q = [kxiIkm - (6 iJVL)  - ail - aiJI + a i z a 1 3  - 

(Eq. lYu 

c612a13~v12)1 (Eq’ lTb) 
(Eq. 17c) R = kld6lL/Vi)[ha - LXJ 

Evidently, the solution of the differential Eq. 16 is: EVALUATION OF SYSTEM PARAMETERS FROM 
EXPERIMENTAL DATA 

A ( t )  = X C ,  exp(r,t) (Eq. 18) 

where C, (a = 1, 2, 3 )  are constants of integration to be deter- 
mined from boundary conditions, and r r  (a = 1 , 2 , 3 )  are the three 
roots of the cubic equation: 

“ - 1  Aside from the profferred explanation for the possible existence 
and observation of kinks in the plot of the concentration of the 
central compartment uersus time (9), the main results of the cur- 
rent approach presented in Eqs. 20a-20e for the time dependence 
of concentrations of the three comDartments are in agreement with 

I 

rj + r2P + rQ + R = O  (Eq. 19) the familiar compartment model analysis. However, the significant 
feature of the hydrodynamic analog is that  the physical meaning of 
the observed slopes, intercepts, and rate coefficients can be pre- 
sented. 

TIME DEPENDENCE OF CONCENTRATIONS IN 
COMPARTMENTS 

From the results of the previous section, one is now in a position 
to write down the expressions for time dependence of concentra- 
tions in the three compartments: 

(Eq. 20u) 

M,, = rbL + r o ( a I ,  - k:,!) - k , , ( b l L / v L )  (Eq. mOd) 
(Eq. 20e) 

Utilizing the initial conditions that a t  time t = 0 the concentra- 
tions in Compartments 2 and 3 are null and that the concentra- 
tion in Compartment 1 equals (dose/VI), one has from Eqs. 20a- 
20e: 

p,  = r, - kL,, and m = (VL/61L) 

I 

CCJ0 = 9 
“-1 

I cc, = 0 
“ = I  

(Eq. 21a) 

(Eq. 21b) 

(Eq. 21c) 

The parameters characteristic of the system are the permeabili- 
ties of the barrier between Compartments 1 and 2 , 6 1 2 ,  the barrier 
between Compartments 1 and 3, 613, the volumes of distribution of 
drug in the three compartments, V , ,  and the elimination rate con- 
stant, k20.  One now evidently needs a detailed procedure for eval- 
uating the parameters characteristic of the physiological system 
and the drug from experimental data. Due to limitations of the ex- 
perimental procedure in the physiological system, such experimen- 
tal information is (unfortunately) usually restrided to the time 
course of the concentration of drug in Compartment 1. 

This analysis categorically points out that  the usual identifica- 
tion of the asymptotic slope for large times of the plot of In X l(t) 
with the elimination rate constant h 2 0  is untenable. This asymp- 
totic slope equals the smallest of the three decay constants, say 
(-A equal to & Z O  - r d .  

The familiar resolution of the plot of In X 1 uersus t ,  into sum of 
three linear plots, yields the values of MI, pz, and ps for the slopes. 
Corresponding intercepts a t  time t = 0 yield the values of, for ex- 
ample, i I, I 2, and is .  These are the known quantities a t  present 
from experimental data. Defining the computable quantities jn by: 

In J, = 1 ,  (Eq. 2 4 ~ )  
J“ = C,(1 + r,,m); u = 1. 2, 3 (Eq. 2 4 b )  

Additional information available from experimental data is the 
one has the values of C , ( l  + r ,m) ,  where m equals (V2/612). 

concentration of drug in Compartment 1 a t  time t = 0-uiz.: 

XAO) = j l  + j ?  + j ,  = d o s e / V ,  (Eq. 2.5) 

From a knowledge of the initial dose and X I  (O), the volume of dis- 

Since PI,  w z ,  and w 3  are known, one can compute the quantities A 
= k 2 0  - - ( 6 1 ! / v l )  (Eq’ 2 1 d )  tribution of Compartment 1, V 1 ,  is known. 

(Eq, y l e )  
and C: 

9 = dose(6, , /V1V,) 

Solving the set of simultaneous Eqs. 21a-21c, one has the expres- 
sions for the three integration constants for the three-compart- 
ment model: 

CI = q(w - rL - r , ) / h r l  - rlXrl - r L ) /  (Eq  2%) from the relations: 

C, = ~ r l  + ri - w)/{(rI - r J r L  - r , ) }  (Eq. 22b) A = + ~1 + = P + 3kL” (Eq. 27u) 
C,  ‘= q(w - r l  - rL)/{(r l  - r 4 ) ( r L  - r,)l (Eq. 22c) C = -(PIP&.I) = kio’ + k,o’P + k J J  + R (Eq. 27b) 

Thus, one has the result that  all integration constants are pro- Equations 26a, 266, 27a, and 276 follow from recognition of the 
fact that the decay constants p,’s are the three distinct roots of the portional to dose and one can define a parameter p such that: 

CL = C , p  
c, = -(1 + p ) C ,  

p = [ ( r l  + r i  - w )  x 

cubic equation: 
(Eq. 23a) 
(Eq. 236) 

pol + pu,A + p$ + C = 0 (Eq. B a )  

1 Since a critical examination of the physical and mathematical results of 
the multicompartment hydrodynamic diffusion analog may not be of much 
interest to the general reader, these aspects are presented in the next paper. 

The Parameter P is characteristic of the three-compartment 
pharmacokinetic system. The salient point is that  even though the 
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From Eqs. 20a- ~ O P ,  21a- 21e, and 25, one has: 

XdO) = (C,mlC(p, - KJ + P(w2 - w.41 (Eq. 2%) 
(Eq. 2%) P{;, - (CimKfii - P?)I = J 2  

Elimination of p from Eqs. 29a and 296 yields a quadratic expres- 
sion for the unknown (Clrn): 

(CIm)'(pCc, -- p2Kp1 - ccj) - (C,rnH;,(p, - p:,) + 
J C P ,  - ~ 3 )  + X,(O)(/ .L~ - j t z ) I  + j , X , ( O )  = 0 (F4. 30) 

Since all quantities except (C 1rn) of Eq. 30 are known from ex- 
perimental information, one can solve for the value of (Clm). 
Then p can be solved using: 

P = ( / 1 2  - ~cjj-~[[XI(O)/(Clm)l - ( P I  - p3)]  (Eq. 31) 

One has from Eqs. 21c and 23c two relations relating w and k20: 

w(dose/V,) = (Clm){p12 - p S 2 )  + p(pZ2 - p:) + 
2h20[(/1i - /A<) + P(P! - ~ . j ) I l  (I%. 32) 

w = 2 k m  + [ [ ( p l y  - p.;') + 
P(P's' - / @ ) I / { ( P ~  - P.J + P(P> - ~ J l l  (Eq. 33) 

Since p and (Clrn) are now known, Eqs. 32 and 33 should be 
solved simultaneously for w and k20. From the knowledge of k20, 
p o ,  and jo, the values of C,, rs, and rn are computed. From the 
values of VI  and Vp thus obtained, 612 can be computed. Since w is 
defined in Eq. 21d, one can now compute (613lVl). The value of 
a13 is computed using: 

a A - kz, - (Es. 34) 

The value of (613/v3) is obtained using: 

(d,$V,) = - (dlS/Vl)  = A + w - 2k, (fi. 35) 

From these procedures, all parameters characteristic of the 
three-compartment pharmacokinetic system and drug are thus 
computed. Since the quadratic Eq. 30 may yield two distinct 
values of (Clrn), one of these values may be discarded in certain 
cases as physically meaningless, using the physical realistic condi- 
tion that the value of a13 should be greater than (613/vl). 

The physically meaningful condition that a13  is greater than 
( W V 1  ) leads to the condition that when the two roots of Eq. 30 
are distinct, one of them is meaningless. This conclusion is arrived 
a t  by the arguments presented in the Appendix. 

COMPLETE SPECIFICATION OF PARAMETERS IN 

The prescription presented can be systematically characterized 
as follows. Compute V1, the volume of distribution of the central 
compartment, using Eq. 25. Compute the product (Clrn) using Eq. 
30, and compute p using Eq. 31. Then compute w and k20 using 
Eqs. 32 and 33 simultaneously, and compute r l ,  rp, and r3 using 
the relations r o  = p,  + k20. 

Compute C I  using the relation C I  = ;I - rl(C1rn); compute 
C2 and C3 using Eqs. 23a and 236, respectively. The sum of ( a l p  
+ (213) and lnln + (d13/Vl )I are known from Eqs. 34 and 35. Since 
(61dV3)  is also known from Eq. 35, Eq. 266 yields the value of 
(61dV1).  Thus, 612 is now known. Since rn is known from values of 
C I  and K l r n ) ,  V2 is computable. Thus, calculation of individual 
values of a 1 2  and a13 is now feasible with Eq. 26a. Compute (&/ 
V1 ) from knowledge of a13  and (&3/V3). 

THREE-COMPARTMENT SYSTEMS 

CONCLUSIONS 

The motivation behind the development of the hydrodynamic 
diffusion model as an alternative to more familiar pharmacokinetic 
multicompartment models has been many fold. The present work 
derived inspiration from the classic work of Northrop and Anson 
(6). 

The similarity of the method of resolution of compound radioac- 
tivity into component contributions and familiar multicompart- 
ment models of pharmacokinetics is a t  best only superficial. Ra- 

dioactive decay processes have the unique advantages that decay 
constants are independent of environment and that the integration 
constants encountered are just the concentrations a t  initial time of 
independently decaying individual components. In two- or three- 
compartment models, the integration constants, although propor- 
tional to dose, are functions of decay constants. 

The decay constants of familiar pharmacokinetics are deter- 
mined by system parameters such as volumes of distribution of 
various compartments, permeability properties of barriers parti- 
tioning the system into compartments, and the behavior of the 
drug itself. In familiar compartment models, much of this informa- 
tion is latent in the kinetic rate coefficients, and extraction of 
physical properties of the system from such rate coefficients is 
messy. I t  is also maintained that these decay constants are inde- 
pendent of volumes of distribution in familiar pharmacokinetics. 
Introduction of five rate constants, while three are sufficient, to 
describe the flow processes in three-compartment models and bal- 
ancing gain uersus loss by forward flow minus backward flow is 
unnecessary and aesthetically unappealing. 

Other motivations behind the present work are to explain possi- 
ble observations of kinks in the concentration time plot of central 
compartments (4) and to analyze the theoretical possibility of ob- 
servation of aperiodic oscillatory phenomena with certain drugs in 
certain physiological systems. Some of these considerations are 
presented in the following paper (9). It should be emphasized, 
however, that  observation of even one such kink requires that the 
drug and the physiological systems simulate a multicompartment 
system with the number of compartments greater than three. 

A reliable method of computation of characteristic parameters 
of the system from experimental data in preference to the familiar 
procedure is presented. One can incorporate improvements such as 
multiple doses given a t  different times through the central com- 
partment as well as metabolic reactions in various compartments 
and barriers with which the administered drug can participate. Ex- 
tension of the method to the multicompartment model is straight- 
forward and naturally tedious. The presented model can he elabo- 
rated further to include real situations. 

APPENDIX 

I t  is shown here that the physical condition that a13 is greater 
than (613/V1) results always in only one physically meaningful 
root of Eq. 30. Defining a = (PI - pp), 6 = ( p l  - p d ,  c = (112 - d, 
Y = (Cl rn) ,  and d = (613/v3), one has Eqs. 22a-22c written as: 

Y a b  = X,(OXd + p,) (Eq. A l n )  
YWC = -X,(O)(d + p 2 )  (Eq. A l b )  

Y(1 + p)bc = -X,(OXd + p,) (Eq. Alc) 

The physical condition that a13 is greater than (&s/V1) demands 
that d is positive definite. Equations 29a and 296 become: 

XJO) = Y ( 6  + p c )  (Eq. A") 
P = j2/(Jl - Y a )  (Eq. A2h) 

Replacing Y in Eqs. A2a and A26 by the result of Eq. Ala yields: 

J L C .  = X , ( O ) ( d  + p ,  - a )  - j , h  + j , l ab / (d  + pl)l (Eq. A3) 

The coefficient of (C 1m) of Eq. 30 becomes: 

X , ( O X d  + p , )  + j , l a b / ( d  + pl)l (Eq. A4) 

and the two roots of Eq. 30 are: 

Y +  = X,(OXd + p, ) /nb  (Eq. A.ia) 
y- = ;J(d + p,) (Eq. A5h) 

Thus, solution for (C Im ) expressed by Eq. A5a is in agreement 
with Eq. Ala. S ince j l  = C1 + Clrn(p1 + k z o ) ,  one has from Eq. 
A56 that: 

1 = m(d - h2(,) (Eq. A6) 

If d is zero or negative, or if d is positive and has a magnitude 
less than k p o ,  one has the nonphysical result that  m should be 
negative. Thus, the second root of Eq. 30 becomes meaningless 
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when d is zero or negative. Unless the value of j ,  equals X I  (O)((d + jil)2/(ab) }, the two roots of Eq. 30 will be distinct. 

DEFINITION O F  SYMBOLS 
p c  = decay constants of exponentials 
r n  = roots of cubic equation kEq. 19) 
V, = volume of distribution of the compartments 
c _ ‘  - integration constants proportional to dose 
tl* = time at  which minimum occurs inXl( t )  

tz* = time a t  which maximum occurs inXz(t) 
t3* = time a t  which maximum occurs in Xs(t); X3(t3*) = Xl(t3*) 

t(0) = time a t  which extremum occurs in F ( t )  
Xo = concentration in -Compartment u 
i, = intercepts of three resolved plots whose sum depicts In X (t) 

1 3 ~ 2  = permeability of drug across the barrier between Compart- 

tl** = time a t  which maximum may occur inXl( t )  

ments 1 and 2 
u12 = (dlZ/Vl) + (I312/V2) 
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Hydrodynamic Analog Model for Pharmacokinetics 11: 
Critical Examination of Model and Its 
Contribution to Pharmacokinetics 

V. S. VAIDHYANATHAN 

Abstract 0 A comparison of the conventional pharmacokinetic 
models and the previously proposed hydrodynamic diffusion ana- 
log model is presented. A significant result that an n- compartment 
system can exhibit a t  best (n - 1) extremum times in the concen- 
tration-time plot of the central compartment under appropriate 
values of physiological parameters is presented. The observation of 
kinks experimentally in certain physiological-drug systems is thus 
shown to be amenable to explanation. 

Keyphrases Models, hydrodynamic diffusion analog-proposed 
for pharmacokinetics, critical examination, equations 0 Diffusion 
model, hydrodynamic, analog-proposed for pharmacokinetics, 
critical examination, equations Pharmacokinetics-hydrody- 
namic diffusion analog model proposed and critically examined, 
equations 

The hydrodynamic analog of the multicompart- 
ment model presented previously (1) leads to certain 
significant conclusions, which agree with the results 
of the familiar pharmacokinetic models and provide 
new insights. This article presents a critical examina- 
tion of this contribution to pharmacokinetics and a 
possible observation of aperiodic oscillatory phenom- 
ena similar to the kink observed in the case of the di- 
cumarol system. 

ANALYSIS 

Mathematically, both the hydrodynamic analog and familiar 

multicompartment models essentially involve solutions of coupled 
first-order linear differential equations of the kind (2): 

X ( t )  = A X ( t )  (Eq. 1) 
where X is an n- component vector whose elements represent con- 
centrations a t  time t of the n-compartment diffusion model (1). 

In the familiar pharmacokinetic model, these vector elements 
represent the amount of substance present in each compartment. 
The super dot in Eq. 1 denotes the first time derivative. The time- 
independent elements of matrix A of Eq. 1 represent the permea- 
bilities 01‘ the drug in barriers between connected compartments in 
the hydrodynamic diffusion model. Thus, when there is no connec- 
tion between Compartments i and j ,  the corresponding matrix ele- 
ment A,J is zero. 

In the familiar pharmacokinetic model, the elements of the cor- 
responding matrix are linear combinations of assumed first-order 
rate constants. For example, the partial contribution (due to the 
existence of connectivity with Compartment 1 )  to the rate of de- 
crease in the amount of material in Compartment i is assumed to 
be given by: 

Y , = - h , , Y , + k , , Y ,  (Eq. 2) 
where YJ and Y,  are the amounts in Compartments J and i ,  respec- 
tively, a t  time t; and the k,J’s are the assumed first-order rate con- 
stants. 

Thus, volumes of distribution of various compartments are not 
introduced in the formulation of the familiar pharmacokinetic 
model and these need to  be extracted from experimental data on 
the basis of ad  hoc assumptions. The decay constants of conven- 
tional pharmacokinetics are considered not as functions of vol- 
umes of distribution. Since volumes of distribution of various com- 
partments in an n- compartment model definitely play a role in the 
material distribution in various compartments at arbitrary finite 
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